SARS CoV-2 Spike PaB 

Order now: dominika@ksiazkiwnauce.pl

SARS-CoV-2 Spike Peptide

9087P ProSci 0.05 mg 235.5 EUR
Description: (CT) SARS-CoV-2 Spike RBD peptide

SARS-CoV-2 Spike Peptide

9091P ProSci 0.05 mg 235.5 EUR
Description: (IN) SARS-CoV-2 Spike peptide

SARS-CoV-2 Spike Peptide

9095P ProSci 0.05 mg 235.5 EUR
Description: (IN) SARS-CoV-2 Spike peptide

SARS-CoV-2 (COVID-19) Spike Antibody

3525-002mg ProSci 0.02 mg 206.18 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody

3525-01mg ProSci 0.1 mg 523.7 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) spike antibody

BSV-COV-AB-05 BioServUK 25 ul Ask for price
Description: SARS-CoV-2 (COVID-19) spike antibody (Spike (S1), Polyclonal)

SARS-CoV-2 (COVID-19) spike antibody

BSV-COV-AB-06 BioServUK 100 ul Ask for price
Description: SARS-CoV-2 (COVID-19) spike antibody (Spike (S1), Polyclonal)

SARS-CoV-2 Spike Antibody

10-2868 Fitzgerald 1 mg 1000 EUR
Description: SARS-CoV-2 Spike Antibody, Recombinant Human

SARS-CoV-2 Spike Antibody

10-2869 Fitzgerald 1 mg 1000 EUR
Description: SARS-CoV-2 Spike Antibody, Recombinant Human

SARS-CoV-2 Spike Antibody

10-2870 Fitzgerald 1 mg 1000 EUR
Description: SARS-CoV-2 Spike Antibody, Recombinant Human

SARS-CoV-2 Spike Antibody

10-2871 Fitzgerald 1 mg 1000 EUR
Description: SARS-CoV-2 Spike Antibody, Recombinant Human

SARS-CoV-2 Spike Antibody

10-2906 Fitzgerald 1 mg 225 EUR
Description: Anti-SARS-CoV-2 Spike Protein Monoclonal antibody

SARS-CoV-2 Spike Antibody

10-2907 Fitzgerald 1 mg 225 EUR
Description: Anti-SARS-CoV-2 Spike Protein Monoclonal antibody

SARS-CoV/ SARS-CoV-2 (COVID-19) spike antibody [1A9] 100 ul

BSV-COV-AB-02 BioServUK 100 ul Ask for price
Description: SARS-CoV/ SARS-CoV-2 (COVID-19) spike antibody [1A9] (Spike (S2), Monoclonal)

SARS-CoV-2 (COVID-19) Spike 681P Antibody

9091-002mg ProSci 0.02 mg 229.7 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike 681P Antibody

9091-01mg ProSci 0.1 mg 594.26 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

Spike (SARS-CoV-2) Lentivirus

78010-1 BPS Bioscience 100 µl 835 EUR
Description: Cell entry of SARS-CoV-2 depends on the binding of viral spike protein to cellular receptor ACE2. The SARS-CoV-2 Spike Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types mammalian cells, including primary and non-dividing cells. The particles contain the full length SARS-CoV-2 spike gene (QHD43416.1) driven by an EF1a promoter._x000D_

Spike (SARS-CoV-2) Lentivirus

78010-2 BPS Bioscience 500 µl x 2 2095 EUR
Description: Cell entry of SARS-CoV-2 depends on the binding of viral spike protein to cellular receptor ACE2. The SARS-CoV-2 Spike Lentivirus are replication incompetent, HIV-based, VSV-G pseudotyped lentiviral particles that are ready to be transduced into almost all types mammalian cells, including primary and non-dividing cells. The particles contain the full length SARS-CoV-2 spike gene (QHD43416.1) driven by an EF1a promoter._x000D_

SARS-CoV Spike Protein

abx060655-1mg Abbexa 1 mg 2030.4 EUR

SARS-CoV Spike Antibody

3219-002mg ProSci 0.02 mg 206.18 EUR
Description: SARS-CoV Spike Antibody: A novel coronavirus has been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3219-01mg ProSci 0.1 mg 523.7 EUR
Description: SARS-CoV Spike Antibody: A novel coronavirus has been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3221-002mg ProSci 0.02 mg 206.18 EUR
Description: SARS-CoV Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3221-01mg ProSci 0.1 mg 523.7 EUR
Description: SARS-CoV Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3223-002mg ProSci 0.02 mg 206.18 EUR
Description: SARS Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3223-01mg ProSci 0.1 mg 523.7 EUR
Description: SARS Spike Antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3225-002mg ProSci 0.02 mg 206.18 EUR
Description: SARS-CoV Spike antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

3225-01mg ProSci 0.1 mg 523.7 EUR
Description: SARS-CoV Spike antibody: A novel coronavirus has recently been identified as the causative agent of SARS (Severe Acute Respiratory Syndrome). Coronaviruses are a major cause of upper respiratory diseases in humans. The genomes of these viruses are positive-stranded RNA approximately 27-31kb in length. SARS infection can be mediated by the binding of the viral spike protein, a glycosylated 139 kDa protein and the major surface antigen of the virus, to the angiotensin-converting enzyme 2 (ACE2) on target cells. This binding can be blocked by a soluble form of ACE2.

SARS-CoV Spike Antibody

21807 SAB 100ul 1039 EUR

SARS-CoV Spike Antibody

21808 SAB 100ul 1039 EUR

SARS-CoV Spike Antibody

21809 SAB 100ul 1039 EUR

SARS-CoV Spike Antibody

21810 SAB 100ul 1039 EUR

SARS-CoV Spike Antibody

21811 SAB 100ul 1039 EUR

SARS-CoV Spike Antibody

21812 SAB 100ul 1039 EUR

SARS-CoV-2 (COVID-19) Spike 156-157EF Antibody

9685-002mg ProSci 0.02 mg 229.7 EUR
Description: SARS-CoV-2 delta variant, a variant of concern (VOC), known as B.1.617.2, was detected in India in October of 2020. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 99% of the cases. This variant carries at least 13 mutations in spike protein across the sub lineages, including L452R, D614G, P681R and K417N, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Delta variant was observed globally, which is at least 2.5 times more contagious as the other variants. The Delta variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent.

SARS-CoV-2 (COVID-19) Spike 156-157EF Antibody

9685-01mg ProSci 0.1 mg 594.26 EUR
Description: SARS-CoV-2 delta variant, a variant of concern (VOC), known as B.1.617.2, was detected in India in October of 2020. However, it rapidly spread all over of the world and now it is the dominant variant in the world, which account for more than 99% of the cases. This variant carries at least 13 mutations in spike protein across the sub lineages, including L452R, D614G, P681R and K417N, which can increase the affinity to the human ACE2 receptor. Enhanced transmission of the Delta variant was observed globally, which is at least 2.5 times more contagious as the other variants. The Delta variant affects the effectiveness of COVID19 vaccine and is resistant to neutralization to some extent.

SARS-CoV-2 (COVID-19) Spike S1 Antibody

9083-002mg ProSci 0.02 mg 229.7 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S1 Antibody

9083-01mg ProSci 0.1 mg 594.26 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S2 Antibody

9119-002mg ProSci 0.02 mg 229.7 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S2 Antibody

9119-01mg ProSci 0.1 mg 594.26 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S2 Antibody

9123-002mg ProSci 0.02 mg 229.7 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike S2 Antibody

9123-01mg ProSci 0.1 mg 594.26 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody (HRP)

3525-HRP-002mg ProSci 0.02 mg 229.7 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody (HRP)

3525-HRP-01mg ProSci 0.1 mg 594.26 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody

9087-002mg ProSci 0.02 mg 229.7 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody

9087-01mg ProSci 0.1 mg 594.26 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Matched Pair

MPS-0001 ProSci 1 Set 1029.3 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Matched Pair

MPS-0002 ProSci 1 Set 1029.3 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Matched Pair

MPS-0003 ProSci 1 Set 1029.3 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Matched Pair

MPS-0004 ProSci 1 Set 1029.3 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Matched Pair

MPS-0005 ProSci 1 Set 1029.3 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 - Spike ELISA IgG

IMS2907 ImmunoStep 1 572 EUR
Description: SARS-CoV-2 - Spike ELISA IgG

SARS-CoV-2 Spike S2 Peptide

9119P ProSci 0.05 mg 235.5 EUR
Description: (IN) SARS-CoV-2 Spike peptide

SARS-CoV-2 Spike S2 Peptide

9123P ProSci 0.05 mg 235.5 EUR
Description: (CT) SARS-CoV-2 Spike peptide

SARS-CoV-2 Spike RBD Nanobody

A73680 EpiGentek
  • Ask for price
  • 882.20 EUR
  • 50 ul
  • 100 ul

SARS-CoV-2 Spike RBD Nanobody

10-2874 Fitzgerald 100 ul 700 EUR
Description: SARS-CoV-2 Spike RBD Nanobody

SARS-CoV-2 (COVID-19) Spike Antibody (biotin)

3525-biotin-002mg ProSci 0.02 mg 229.7 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody (biotin)

3525-biotin-01mg ProSci 0.1 mg 594.26 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike 681P Antibody (biotin)

9091-biotin-002mg ProSci 0.02 mg 229.7 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike 681P Antibody (biotin)

9091-biotin-01mg ProSci 0.1 mg 594.26 EUR
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10A1]

PM-9365-002mg ProSci 0.02 mg 229.7 EUR
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10A1]

PM-9365-01mg ProSci 0.1 mg 594.26 EUR
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10B1]

PM-9366-002mg ProSci 0.02 mg 229.7 EUR
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10B1]

PM-9366-01mg ProSci 0.1 mg 594.26 EUR
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10C8]

PM-9367-002mg ProSci 0.02 mg 229.7 EUR
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

SARS-CoV-2 (COVID-19) Spike 681P Antibody [8G10C8]

PM-9367-01mg ProSci 0.1 mg 594.26 EUR
Description: In September of 2020 a new lineage of SARS-CoV-2, known as B.1.1.7 and named as Alpha variant, was discovered in the United Kingdom. This lineage developed 14 lineage-specific amino acid replacements and 3 deletions. These changes caused an increase in transmission of Alpha variant (B.1.1.7 lineage) by at least 50%, leading to increased disease severity and higher death rates. The effectiveness of COVID19 vaccines are not affected by the Alpha variant. One of the mutations associated with this lineage is a N501Y in the spike protein of the virus. It is believed that this mutation is able to increase the spike protein's affinity for the host ACE2 receptor and it has been associated with increased infectivity and virulence. B.1.1.7 viruses have also been shown to have a P681H mutation in the cleavage site of spike protein. This location is one of the residues that make up the furin proteolytic cleavage site between S1 and S2 in spike protein.

Recombinant SARS-CoV-2 Spike RBD

AP60510 SAB each Ask for price

SARS-CoV-2(COVID-19) Spike Recombinant Protein

10-411 ProSci 0.1 mg 714.3 EUR
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity.

SARS-CoV-2 (COVID-19) Spike Recombinant Protein

11-073 ProSci 0.1 mg 695.4 EUR
Description: May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity.

SARS-CoV-2 (COVID-19) Spike Recombinant Protein

20-233 ProSci 0.1 mg 726.9 EUR
Description: SARS-CoV-2 (COVID-19) Spike Recombinant Protein

SARS-CoV-2 Spike Monoclonal Antibody

A73664 EpiGentek
  • 341.00 EUR
  • 518.10 EUR
  • 50 ul
  • 100 ul

SARS CoV-2 Spike PaB